摘要

As random stepped-frequency chirp (RSFC) signal is used in wide-band radar applications such as synthetic aperture radar (SAR) and inverse SAR. RSFC has advantages over the linear stepped-frequency chirp, including suppressing the range ambiguity, decoupling the range-Doppler coupling, and reducing the signal interference. RSFC is usually descrambled and then fed to the inverse fast Fourier transform (IFFT) to achieve a coherent integration as well as a high-resolution range. However, this method needs frequency descrambling and accurate velocity pre-estimation for moving target detection. We propose a coherent integration method based on time-dechirping for bistatic radar. This method can detect moving targets without frequency descrambling or accurate velocity pre-estimation. This paper first models the target echo mathematically and outlines the difficulties associated with the processing of IFFT for RSFC. Then the detailed principles of the proposed method are introduced and the flowchart is given. Finally, numerical simulations are conducted to verify the effectiveness of the proposed method and show its detecting ability in the presence of noise.