摘要

This paper discusses a data-driven, cooperative control strategy to maximize wind farm power production. Conventionally, every wind turbine in a wind farm is operated to maximize its own power production without taking into account the interactions between the wind turbines in a wind farm. Because of wake interference, such greedy control strategy can significantly lower the power production of the downstream wind turbines and, thus, reduce the overall wind farm power production. As an alternative to the greedy control strategy, we study a cooperative wind farm control strategy that determines and executes the optimum coordinated control actions for maximizing the total wind farm power production. To determine the optimum coordinated control actions of the wind turbines, we employ a data-driven optimization method that seeks to find the optimum control actions using only the power measurement data collected from the wind turbines in a wind farm. In particular, we employ the Bayesian Ascent (BA) algorithm, a probabilistic optimization method constructed based on Gaussian Process regression and the trust region concept. Wind tunnel experiments using 6 scaled wind turbine models are conducted to assess (1) the effectiveness of the cooperative control strategy in improving the power production; and (2) the efficiency of the BA algorithm in determining the optimum control actions of the wind turbines using only the input control actions and the output power measurement data.

  • 出版日期2017-7