Using beryllium bonds to change halogen bonds from traditional to chlorine-shared to ion-pair bonds

作者:Alkorta Ibon*; Elguero Jose; Mo Otilia; Yanez Manuel; Del Bene Janet E
来源:Physical Chemistry Chemical Physics, 2015, 17(3): 2259-2267.
DOI:10.1039/c4cp04574b

摘要

Ab initio MP2/aug'-cc-pVTZ calculations have been carried out to investigate the structures, binding energies, and bonding characteristics of binary complexes HFBe:FCl, R2Be:FCl, and FCl:N-base, and of ternary complexes HFBe: FCl: N-base and R2Be: FCl: N-base for R = H, F, Cl; N-base = NH3, NHCH2, NCH. Dramatic synergistic cooperative effects have been found between the Be center dot center dot center dot F beryllium bonds and the Cl center dot center dot center dot N halogen bonds in ternary complexes. The Cl center dot center dot center dot N traditional halogen bonds and the Be center dot center dot center dot F beryllium bonds in binary complexes become significantly stronger in ternary complexes, while the F-Cl bond weakens. Charge-transfer from F to the empty p(sigma) orbital of Be leads to a bending of the XYBe molecule and a change in the hybridization of Be, which in the limit becomes sp(2). As a function of the intrinsic basicity of the nitrogen base and the intrinsic acidity of the Be derivative, the halogen-bond type evolves from traditional to chlorine-shared to ion-pair bonds. The mechanism by which an ion-pair complex is formed is similar to that involved in the dissociative proton attachment process. EOM-CCSD spin-spin coupling constants (1X)J(Cl-N) across the halogen bond in these complexes also provide evidence of the same evolution of the halogen-bond type.

  • 出版日期2015