摘要

Trialkylamine (N235)-tributyl phosphate (TBP) impregnated resins (N-TIRs) were prepared, so as to evaluate the effects of the addition of TBP on the preparation and adsorption performance of N235-impregnated resins (NIRs). The results show that TBP can obviously increase the impregnation ratio and shorten the impregnation equilibrium time of the N-TIRs when compared to that of the NIRs (57.73% versus 36.95% and 5 min versus 240 min). It is confirmed that TBP can interact with N235 during the impregnation process, which shorten the adsorption equilibrium time and increases the adsorption capacity of the N-TIRs for V(V) when compared to that of the NIRs (6 h versus 10 h and 50.95 mg.g(-1) versus 46.73 mg.g(-1)). The kinetics fitting results demonstrate that the adsorption of V(V) onto N-TIRs and NIRs all conform to pseudo-second order kinetic model and chemical reaction is the rate-limiting step of the whole adsorption process. In the meanwhile, the reaction constant (K-s) implies that the chemical reaction rate of V(V) with the impregnated extractants in N-TIRs is faster than that in NIRs. The N-TIRs present higher stability and selectivity than NIRs. This study manifests that the addition of a secondary reagent may be a potential and novel technique on the preparation of SIRs and the enhancement of adsorption and separation for ions.