摘要

The GABA(A) receptors (GABA(A)Rs) play an important role in inhibitory transmission in the brain. The GABA(A)Rs could be identified using a medicinal chemistry approach to characterize with a series of chemical structural analogues, some identified in nature, some synthesized, to control the structural conformational rigidity/flexibility so as to define the 'receptor-specific' GABA agonist ligand structure. In addition to the isosteric site ligands, these ligand-gated chloride ion channel proteins exhibited modulation by several chemotypes of allosteric ligands, that help define structure and function. The channel blocker picrotoxin identified a noncompetitive channel blocker site in GABA(A)Rs. This ligand site is located in the transmembrane channel pore, whereas the GABA agonist site is in the extracellular domain at subunit interfaces, a site useful for low energy coupled conformational changes of the functional channel domain. Also in the trans-membrane domain are allosteric modulatory ligand sites, mostly positive, for diverse chemotypes with general anesthetic efficacy, namely, the volatile and intravenous agents: barbiturates, etomidate, propofol, long-chain alcohols, and neurosteroids. The last are apparent endogenous positive allosteric modulators of GABA(A)Rs. These binding sites depend on the GABA(A)R heteropentameric subunit composition, i.e., subtypes. Two classes of pharmacologically very important allosteric modulatory ligand binding site reside in the extracellular domain at modified agonist sites at other subunit interfaces: the benzodiazepine site, and the low-dose ethanol site. The benzodiazepine site is specific for certain subunit combination subtypes, mainly synaptically localized. In contrast, the low-dose (high affinity) ethanol site(s) is found at a modified benzodiazepine site on different, extrasynaptic, subtypes.

  • 出版日期2014-10