摘要

The molecular mechanisms underlying axonal pathfinding are not well understood. In a genetic screen for mutations affecting the projection of the larval optic nerve we isolated the abstrakt locus. abstrakt is required for pathfinding of the larval optic nerve, and it also affects development in both the adult visual system and the embryonic CNS. Here we report the molecular characterization of abstrakt. It encodes a putative ATP-dependent RNA helicase of the DEAD box protein family, with two rare substitutions in the PTRELA and the RG-D motifs, thought to be involved in oligonucleotide binding: serine for threonine, and lysine for arginine, respectively. Two mutant alleles of abstrakt show amino acid exchanges in highly conserved positions. A glycine to serine exchange in the HRIGR motif, which is involved in RNA binding and ATP hydrolysis, results in a complete loss of protein function; and a proline to leucine exchange located between the highly conserved ATPase A and PTRELA motifs results in temperature-sensitive protein function. Both the broad requirement for abstrakt gene function and its ubiquitous expression are consistent with a molecular function of the abstrakt protein in mRNA splicing or translational control.

  • 出版日期2000-3-1

全文