摘要

This work introduced a method to study river flow variability in response to climate change by using remote sensing precipitation data, downscaled climate model outputs with bias corrections, and a land surface model. A meteorological forcing dataset representing future climate was constructed via the delta change method in which the modeled change was added to the present-day conditions. The delta change was conducted at a fine spatial and temporal scale to contain the signals of weather events, which exhibit substantial responses to climate change. An empirical transformation technique was further applied to the constructed forcing to ensure a realistic range. The meteorological forcing was then used to drive the land surface model to simulate the future river flow. The results show that preserving fine-scale processes in response to climate change is a necessity to assess climatic impacts on the variability of river flow events.

全文