摘要

The unfavourable relationship between electrical and thermal conductivity limits the choice of solid-state materials for thermoelectric generators (TEG). Among ionic liquids (IOL), it appears that a large variety of thermoelectric (TE) materials with promising high Seebeck coefficients have potential for development. Furthermore, the novel solid-on-liquid deposition technology (SOLID) allows the encapsulation of liquid TE materials to create new, highly integrated TEG devices. Following this vision, this paper studies a large number of IOLs looking at TE-relevant parameters such as thermal and electrical conductivity, Seebeck coefficient and temperature-dependent viscosity. We show that positive and negative Seebeck coefficients can be obtained, depending on the molecular structure and the viscosity of the IOL. The properties of single-junction TEGs are presented in terms of I-V characteristics correlated with the IOL properties. We prove that the limiting effect of conversion efficiency is the current density that can be extracted from a device rather than the Seebeck coefficient.

  • 出版日期2014-10