摘要

This paper analyzes the deflection and pull-in behaviors of cantilever and doubly clamped carbon nanotubes (CNTs) under electrostatic actuation using the homotopy perturbation method. The effects of electrostatic force and interatomic interactions on the deflection and pull-in instabilities of CNTs with different lengths, diameters, and boundary conditions are investigated in detail. The results reveal that larger diameters and shorter lengths result in higher pull-in voltages. Moreover, CNTs with doubly clamped boundary conditions, in comparison with cantilever boundary conditions, are more resistant to pull-in.

  • 出版日期2013-12