Non-crossbridge calcium-dependent stiffness in slow and fast skeletal fibres from mouse muscle

作者:Nocella Marta; Colombini Barbara; Bagni Maria Angela; Bruton Joseph; Cecchi Giovanni*
来源:Journal of Muscle Research and Cell Motility, 2012, 32(6): 403-409.
DOI:10.1007/s10974-011-9274-5

摘要

We showed previously that force development in frog and FDB mouse skeletal muscle fibres is preceded by an increase of fibre stiffness occurring well before crossbridge attachment and force generation. This stiffness increase, referred to as static stiffness, is due to a Ca2+-dependent stiffening of a non-crossbridge sarcomere structure which we suggested could be attributed to the titin filaments. To investigate further the role of titin in static stiffness, we measured static stiffness properties at 24 and 35A degrees C in soleus and EDL mouse muscle fibres which are known to express different titin isoforms. We found that static stiffness was present in both soleus and EDL fibres, however, its value was about five times greater in EDL than in soleus fibres. The rate of development of static stiffness on stimulation increased with temperature and was slightly faster in EDL than in soleus in agreement with previously published data on the time course of the intracellular Ca2+ transients in these muscles. The present results show that the presence of a non-crossbridge Ca2+-dependent stiffening of the muscle fibre is a physiological general characteristic of skeletal muscle. Static stiffness depends on fibre type, being greater and developing faster in fast than in slow fibres. Our observations are consistent with the idea that titin stiffening on contraction improves the sarcomere structure stability. Such an action in fact seems to be more important in EDL fast fibre than in soleus slow fibres.

  • 出版日期2012-3