Neuronal deletion of GSK3 beta increases microtubule speed in the growth cone and enhances axon regeneration via CRMP-2 and independently of MAP1B and CLASP2

作者:Liz Marcia A; Mar Fernando M; Santos Telma E; Pimentel Helena I; Marques Ana M; Morgado Marlene M; Vieira S Lvia; Sousa Vera F; Pemble Hayley; Wittmann Torsten; Sutherland Calum; Woodgett James R; Sousa Monica M*
来源:BMC Biology, 2014, 12(1): 47.
DOI:10.1186/1741-7007-12-47

摘要

Background: In the adult central nervous system, axonal regeneration is abortive. Regulators of microtubule dynamics have emerged as attractive targets to promote axonal growth following injury as microtubule organization is pivotal for growth cone formation. In this study, we used conditioned neurons with high regenerative capacity to further dissect cytoskeletal mechanisms that might be involved in the gain of intrinsic axon growth capacity. %26lt;br%26gt;Results: Following a phospho-site broad signaling pathway screen, we found that in conditioned neurons with high regenerative capacity, decreased glycogen synthase kinase 3 beta (GSK3 beta) activity and increased microtubule growth speed in the growth cone were present. To investigate the importance of GSK3 beta regulation during axonal regeneration in vivo, we used three genetic mouse models with high, intermediate or no GSK3 beta activity in neurons. Following spinal cord injury, reduced GSK3 beta levels or complete neuronal deletion of GSK3 beta led to increased growth cone microtubule growth speed and promoted axon regeneration. While several microtubule-interacting proteins are GSK3 beta substrates, phospho-mimetic collapsin response mediator protein 2 (T/D-CRMP-2) was sufficient to decrease microtubule growth speed and neurite outgrowth of conditioned neurons and of GSK3 beta-depleted neurons, prevailing over the effect of decreased levels of phosphorylated microtubule-associated protein 1B (MAP1B) and through a mechanism unrelated to decreased levels of phosphorylated cytoplasmic linker associated protein 2 (CLASP2). In addition, phospho-resistant T/A-CRMP-2 counteracted the inhibitory myelin effect on neurite growth, further supporting the GSK3 beta-CRMP-2 relevance during axon regeneration. %26lt;br%26gt;Conclusions: Our work shows that increased microtubule growth speed in the growth cone is present in conditions of increased axonal growth, and is achieved following inactivation of the GSK3 beta-CRMP-2 pathway, enhancing axon regeneration through the glial scar. In this context, our results support that a precise control of microtubule dynamics, specifically in the growth cone, is required to optimize axon regrowth.

  • 出版日期2014-6-12