摘要

A computational model of flagellar motility is presented using the finite element method. Two-dimensional traveling waves of finite amplitude are propagated down the flagellum and the swimmer is propelled through a viscous fluid according to Newton's second law of motion. Incompressible Navier-Stokes equations are solved on a triangular moving mesh and arbitrary Lagrangian-Eulerian formulation is employed to accommodate the deforming boundaries. The results from the present study are validated against the data available in the literature and close agreement with previous works is found. The effects of wave parameters as well as head morphology on the swimming characteristics are studied for different swimming conditions. We have found that the swimming velocities are linear functions of finite amplitudes and that the rate of work is independent of the channel height for large amplitudes. Furthermore, we have also demonstrated that for the range of wave parameters that are often encountered in human sperm motility studies, the propulsive velocity versus the wavelength exhibits dissimilar trends for different channel heights. Various head configurations were analyzed and it is also observed that wall proximity amplifies the effects induced by different head shapes. By taking non-Newtonian fluids into account, we present new efficiency analyzes through which we have found that the model microorganism swims much more efficiently in shear-thinning fluids.

  • 出版日期2015-11-1

全文