摘要

When the spacing between the slider and lubricant in a hard disk drive decreases to less than 5 nm, the effect of the intermolecular force between these two surfaces can no longer be ignored. This effect on the lubricant distribution at the near-contact head disk interface is investigated via molecular dynamics method. In this study, the lubricant is confined between a smooth disk surface and a rough slider surface represented as a partially cosinusoidal wave. The simulation results reveal that the intermolecular force-induced meniscus formation at the near-contact head disk interface is strongly sensitive to the slider-to-disk separation, lubricant film thickness and the asperity shape (or roughness) of the slider. The attractive van der Waals forces between the slider and lubricant become weaker with increasing slider-to-disk separation and asperity mid-height, but decreasing lubricant film thickness and asperity mid-width. The Hamaker theory application to van der Waals interactions is also introduced to verify the molecular dynamics simulation. It is found that the critical separation, below which the lubricant will lose its stability to form a meniscus, increases approximately linearly with the lubricant film thickness, for slider surfaces with or without roughness both in the molecular dynamics simulation and Hamaker theory application to van der Waals interactions. Moreover, it is observed that the critical separation between a smooth disk and rough slider surface will slightly decrease when the asperity mid-height increases. The same phenomenon is observed when the asperity mid-width reduces.

  • 出版日期2011-7
  • 单位南阳理工学院