摘要

A systems genetics approach combining pathway analysis of quantitative trait loci (QTL) and gene expression information has provided strong evidence for common pathways associated with genetic resistance to internal parasites. Gene data, collected from published QTL regions in sheep, cattle, mice, rats and humans, and microarray data from sheep, were converted to human Entrez Gene IDs and compared to the KEGG pathway database. Selection of pathways from QTL data was based on a selection index that ensured that the selected pathways were in all species and the majority of the projects overall and within species. Pathways with either up- and down-regulated genes, primarily up-regulated genes or primarily down-regulated genes, were selected from gene expression data. After comparing the data sets independently, the pathways from each data set were compared and the common set of pathways and genes was identified. Comparisons within data sets identified 21 pathways from QTL data and 66 pathways from gene expression data. Both selected sets were enriched with pathways involved in immune functions, disease and cell responses to signals. The analysis identified 14 pathways that were common between QTL and gene expression data, and four directly associated with IFN? or MHCII, with 31 common genes, including three MHCII genes. In conclusion, a systems genetics approach combining data from multiple QTL and gene expression projects led to the discovery of common pathways associated with genetic resistance to internal parasites. This systems genetics approach may prove significant for the discovery of candidate genes for many other multifactorial, economically important traits.

  • 出版日期2012-4