摘要

A space vector pulse-width modulation (SVPWM) algorithm for a three-level symmetrical six-phase drive, based on a vector space decomposition approach, is, for the first time, presented and experimentally proven in this paper. The process how to correctly select the optimal switching sequences, based on several starting requirements and conditions for the analyzed topology, such that the output phase voltage waveforms do not contain any low-order harmonics, is explained in detail. The developed SVPWM algorithm is verified experimentally using a three-level neutral-point-clamped converter and a symmetrical six-phase induction machine. Obtained results prove the validity of the developed SVPWM algorithm. The performance of the SVPWM algorithm is compared with the corresponding carrier-based modulation strategy, and it is shown that the two techniques yield identical performance. Finally, both simulation and experimental analysis of the voltage and current total harmonic distortion (THD) are reported.

  • 出版日期2017-11