摘要

RNA silencing is a defense mechanism exploited by plants against viruses. Upon infection, viral genomes and their transcripts are processed by Dicer-like (DCL) ribonucleases into viral small interfering RNAs (vsRNAs) of 21-24 nucleotides that further guide silencing of viral transcripts. To get an insight into the molecular interaction between tomato and the monopartite phloem-limited begomovirus tomato yellow leaf curl Sardinia virus (TYLCSV), a pathogen inducing a devastating disease of tomato in the Mediterranean region, we characterized by deep sequencing the vsRNA population in virus-infected tomato plants, using a Solexa/Illumina platform. TYLCSV-sRNAs spanned the entire viral genome but were discontinuously distributed throughout it, with a prevalence from the transcribed regions. TYLCSV-sRNAs were mainly 21-22 nucleotides in length and their polarity was asymmetrically distributed along the genome. The most abundant vsRNAs originated from a narrow region overlapping the Rep/C4 genes and from a broader region including the end of the V2 and the beginning of the coat protein genes. Deep sequencing results were validated by different hybridization techniques. Comparisons with the data available on vsRNAs for other begomoviruses highlighted both similarities and differences. Host-derived RNA species cross-reacting with a portion of the viral genome corresponding to the most abundant vsRNAs hotspot were detected. Bioinformatics analyses were carried out to investigate the nature of these host molecules.

  • 出版日期2013-12-26

全文