摘要

The thermal properties of wood-plastic composites (WPCs) and typical heating floor substrates heated by an electrothermal film were studied. Their effects on human feelings and the human autonomic nerve system were also investigated. The temperature changes of the specimens during heating and cooling were analyzed with an infrared thermal imager. People's subjective feelings of touching different materials were analyzed with a semantic differential (SD) technique, and their electrocardiography was recorded with a multi-channel physiological signal acquisition system. The thermal conductivity, temperature variation, tactile impression, and heart rate variability of WPCs and other heating floor substrates were investigated. The WPCs presented a markedly lower thermal conductivity and superior tactile impression compared with ceramic tile, which has a similar density to WPCs. There was a negative correlation between the scores of the warm-cool feeling and the density of the heating floor substrates under room temperature (19 degrees C +/- 1 degrees C), and a positive correlation when heated (33 degrees C +/- 1 degrees C). The thermal conductivity and heat storage capacity of WPC were higher than those of solid wood. Electric heating composite floors with a high comfort level and good thermal properties could be manufactured by combining WPCs and solid wood.