摘要

Torsional vibration dampers (TVDs) are essential components for reducing the torsional vibration of a vehicle power transmission system (VPTS). This paper presents a new parameter optimization method for designing TVDs. The method combines the modal inertia and energy methods by adjusting the modal inertia method using an adjustment factor that is optimized using the energy method. The optimization of TVD parameters seeks to minimize the maximum torsional elastic potential energy of the rear axle near the resonance speed, so that the design variables can be optimized by a manual search process. The proposed method is employed to optimize the parameters of single-stage, two-stage parallel, and two-stage series TVDs coupled to a model VPTS. The damping effects of TVDs optimized by the modal inertia method, the energy method, and the proposed method were compared and analyzed, and the calculation efficiencies of the methods were evaluated. Results show that the proposed method provides better damping effects than the modal inertia method, and also provides far better computing efficiency than the energy method.