摘要

4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and its urinary metabolite, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), are the most investigated carcinogenic biomarkers of tobacco-specific nitrosamines. Here, we report the development of a sensitive and selective assay based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) to simultaneously measure urinary NNK and NNAL. With the use of isotope internal standards and online solid-phase extraction, urine samples were directly analyzed without prior sample purification. The detection limits of this method were 0.13 and 0.19 pg on column for NNK and NNAL, respectively. Inter- and intra-day imprecision was %26lt; 10 %. Mean recovery of NNK and NNAL in urine was 99-100 %. This method was applied to measure urinary NNK and NNAL in 101 smokers and 40 nonsmokers to assess tobacco exposure. Urinary nicotine, cotinine, N3-methyladenine (N3-MeA), and N7-methylguanine (N7-MeG) were also measured by isotope-dilution LC-MS/MS methods. The results showed that urinary NNK was not observed in all smokers. Urinary free NNAL (0.10 +/- A 0.09 ng/mg creatinine) and total NNAL (0.17 +/- A 0.14 ng/mg creatinine) were detected in all smokers. Urinary concentrations of NNAL were significantly correlated with nicotine, cotinine, N3-MeA, and N7-MeG in smokers (P %26lt; 0.001). This method enables the direct and simultaneous measurement of NNK and NNAL in urine using only 50 mu L of urine. This study first demonstrated in human that urinary tobacco-specific nitrosamines metabolite (NNAL) are highly correlated with their resulting methylated DNA lesions in urine, which may help to substantiate an increased cancer risk associated with tobacco smoke exposure.