Airborne LiDAR detection of postglacial faults and Pulju moraine in Palojarvi, Finnish Lapland

作者:Sutinen Raimo*; Hyvonen Eija; Middleton Maarit; Ruskeeniemi Timo
来源:Global and Planetary Change, 2014, 115: 24-32.
DOI:10.1016/j.gloplacha.2014.01.007

摘要

Postglacial faults (PGFs) are indicative of young tectonic activity providing crucial information for nuclear repository studies. Airborne LiDAR (Light Detection And Ranging) data revealed three previously unrecognized late- or postglacial faults in northernmost Finnish Lapland. Under the canopies of mountain birch (Betula pubescens ssp. czerepanovii) we also found clusters of the Pulju moraine, typically found on the ice-divide zone of the former Fennoscandian ice sheet (FIS), to be spatially associated with the fault-scarps. Tilt derivative (TDR) filtered LiDAR data revealed the previously unknown Palojarvi fault that, by the NE-SW orientation parallels with the well documented Lainio-Suijavaara PGF in northern Sweden. This suggests that PGFs are more extensive features than previously recognized. Two inclined diamond drill holes verified the fractured system of the Palojarvi fault and revealed clear signs of postglacial reactivation. Two other previously unrecognized PGFs, the W-E trending Paatsikkajoki fault and the SE-NW trending Kultima fault, differ from the Palojarvi faulting in orientation and possibly also with regard to age. The Pulju moraine, a morphological feature showing transitions from shallow (<2-m-high) circular/arcuate ridges to sinusoidal/anastomosing esker networks was found to be concentrated within 6 km from the Kultima fault-scarp. We advocate that some of the past seismic events took place under the retreating wet-base ice sheet and the increased pore-water pressure triggered the sediment mass flows and formation of the Pulju moraine-esker landscape.

  • 出版日期2014-4