摘要

Multidrug resistance (MDR) in breast cancer therapy occurs frequently. Thus, anti-MDR agents from natural products or synthetic compounds were tested extensively. We have also explored the reverse effect and mechanism of Schisandrin A (Sch A), a natural product, on MCF-7 breast cancer doxorubicin (DOX)-resistant subline MCF-7/DOX. MTT assay was performed to measure the viability of MCF-7 cells to assess the reverse effect of Sch A. Western blot analysis was used to study the protein levels. Laser scanning confocal microscopy was performed to detect the intercellular DOX and Rhodamine 123 accumulation. The qRT-PCR was used to analysis the target gene expression. Dual-luciferase reporter assay was performed to test the transcriptional activity of P-glycoprotein (P-gp). Sch A, at the concentration of 20 A mu M, showed selective reverse effect (better than the positive control, verapamil at 5 A mu M) on MCF-7/DOX cell line but not on BEL-7402/DOX, Hep G2/DOX, and K-562/DOX cells. In addition, Sch A enhanced DOX-induced cleavage of Caspase-9 and PARP levels by increasing intracellular DOX accumulation and inhibiting P-gp function. Furthermore, Sch A selectively suppressed P-gp at gene and protein levels in MCF-7/DOX cells which express high level of MDR1 but not MRP1, MRP3, or BCRP. Besides, Sch A showed inhibitory effect on P-gp transcriptional activity. Sch A significantly reduced p-I kappa B-alpha (Ser32) and p-Stat3 (Tyr705) levels which mediate P-gp expression. In addition, Stat3 knockdown enhanced the reverse effect of siP65. The combined effect of siStat3 and siP65 was better than Sch A single treatment in MCF-7/DOX cells. Sch A specifically reverses P-gp-mediated DOX resistance in MCF-7/DOX cells by blocking P-gp, NF-kappa B, and Stat3 signaling. Inhibition of P65 and Stat3 shows potent anti-MDR effect on MCF-7/DOX cells.

  • 出版日期2018-3
  • 单位临沂市人民医院