摘要

To show the influence of the interface on structure and dynamics of microphase separated polymer systems, we study interfacially modified AB block copolymers with small molecule penetrants. The polymers have a random midblock or tapered midblock whose composition varies from pure A to pure B (or from pure B to pure A for an inverse taper) between two pure blocks of A and B. We perform simple coarse-grained molecular dynamics simulations of symmetric polymers that form lamellae. With normal tapering, both polymer and penetrant diffusion parallel to the lamellae increases as taper length increases. Inverse tapered polymers exist in different conformational states (e.g., stretched vs folded back and forth across the interface) with different dynamic behavior, leading to nonmonotonic trends in their diffusion. However, the local mixing of monomers (rather than polymer conformation) appears to be the most important factor in determining penetrant diffusion.

  • 出版日期2017-4