摘要

In this paper, a CAD-based trajectory planning scheme for parallel machining robots is introduced using the parametric Non-uniform rational basis spline (NURBS) curves. First, a trajectory is designed via a NURBS curve then, a motion scheduling architecture consisting of time-dependent and constant feedrate profiles is advised to generate the position commands on the represented NURBS curve as the tool path. Using the generated commands, the inverse kinematics is elaborated to obtain the joints motions of the parallel machining robot. This paper investigates the NURBS trajectory generation for a parallel robot with 4(UPS)-PU mechanism as the case study. In order to evaluate the effectiveness of the proposed method, the inverse kinematic results for the parallel machining robot of 4(UPS)-PU is compared with the simulation results obtained from the CATIA software. The results confirmed that the proposed trajectory planning scheme along with the advised motion planning architecture is not only feasible for the parallel machining robots but also yields a smooth trajectory with a satisfactory performance for all the joints.

  • 出版日期2016-5