摘要

Manipulation of friction at the nanoscale has been traditionally approached by chemical means (lubrication). Recent friction force microscopy (FFM) experiments demonstrated that it can be done mechanically by applying vibration to accessible elements of the system. This paper provides analytic understanding on why vibration can reduce friction based on a 1D model imitating the FFM tip moving on a substrate. Open-loop stability is first studied, and a feedback vibration control is then designed using the accessible variable. Comparing to the open-loop system, friction force is significantly reduced in the closed-loop system. Numerical simulations show satisfactory performances.

  • 出版日期2011-11

全文