摘要

In this paper, we present a novel decentralized robust methodology for control of quiet upright posture during arm-free paraplegic standing using functional electrical stimulation (FES). Each muscle-joint complex is considered as a subsystem and individual controllers are designed for each one. Each controller operates solely on its associated subsystem, with no exchange of information between them, and the interaction between the subsystems are taken as external disturbances. In order to achieve robustness with respect to external disturbances, unmodeled dynamics, model uncertainty and time-varying properties of muscle-joint dynamics, a robust control framework is proposed. The method is based on the synergistic combination of an adaptive nonlinear compensator with sliding mode control (SmC). Fuzzy logic system is used to represent unknown system dynamics for implementing SMC and an adaptive updating law is designed for online estimating the system parameters such that the global stability and asymptotic convergence to zero of tracking errors is guaranteed. The proposed controller requires no prior knowledge about the dynamics of system to be controlled and no offline learning phase. The results of experiments on three paraplegic subjects show that the proposed control strategy is able to maintain the vertical standing posture using only FES control of ankle dorsiflexion and plantarflexion without using upper limbs for support and to compensate the effect of external disturbances and muscle fatigue.

  • 出版日期2012-1

全文