摘要

An unsteady axisymmetric flow of nonconducting, Newtonian fluid squeezed between two circular plates is proposed with slip and no-slip boundaries. Using similarity transformation, the system of nonlinear partial differential equations of motion is reduced to a single fourth-order nonlinear ordinary differential equation. By using the basic definitions of fractional calculus, we introduced the fractional order form of the fourth-order nonlinear ordinary differential equation. The resulting boundary value fractional problems are solved by the new iterative and Picard methods. Convergence of the considered methods is confirmed by obtaining absolute residual errors for approximate solutions for various Reynolds number. The comparisons of the solutions for various Reynolds number and various values of the fractional order confirm that the two methods are identical and therefore are suitable for solving this kind of problems. Finally, the effects of various Reynolds number on the solution are also studied graphically.

  • 出版日期2016