FoxO1 Links Hepatic Insulin Action to Endoplasmic Reticulum Stress

作者:Kamagate Adama; Kim Dae Hyun; Zhang Ting; Slusher Sandra; Gramignoli Roberto; Strom Stephen C; Bertera Suzanne; Ringquist Steven; Dong H Henry*
来源:Endocrinology, 2010, 151(8): 3521-3535.
DOI:10.1210/en.2009-1306

摘要

Forkhead box O1 (FoxO1) is a transcription factor that mediates the inhibitory effect of insulin on target genes in hepatic metabolism. Hepatic FoxO1 activity is up-regulated to promote glucose production during fasting and is suppressed to limit postprandial glucose excursion after meals. Increased FoxO1 activity augments the expression of insulin receptor (IR) and IR substrate (IRS)2, which in turn inhibits FoxO1 activity in response to reduced insulin action. To address the underlying physiology of such a feedback loop for regulating FoxO1 activity, we delivered FoxO1-ADA by adenovirus-mediated gene transfer into livers of adult mice. FoxO1-ADA is a constitutively active allele that is refractory to insulin inhibition, allowing us to determine the metabolic effect of a dislodged FoxO1 feedback loop in mice. We show that hepatic FoxO1-ADA production resulted in significant induction of IR and IRS2 expression. Mice with increased FoxO1-ADA production exhibited near glycogen depletion. Unexpectedly, hepatic FoxO1-ADA production elicited a profound unfolded protein response, culminating in the induction of hepatic glucose-regulated protein 78 (GRP78) expression. These findings were recapitulated in primary human and mouse hepatocytes. FoxO1 targeted GRP78 gene for trans-activation via selective binding to an insulin responsive element in the GRP78 promoter. This effect was counteracted by insulin. Our studies underscore the importance of an IR and IRS2-dependent feedback loop to keep FoxO1 activity in check for maintaining hepatic glycogen homeostasis and promoting adaptive unfolded protein response in response to altered metabolism and insulin action. Excessive FoxO1 activity, resulting from a dislodged FoxO1 feedback loop in insulin resistant liver, is attributable to hepatic endoplasmic reticulum stress and metabolic abnormalities in diabetes. (Endocrinology 151: 3521-3535, 2010)

  • 出版日期2010-8