Multi-Functionality of Macroporous TiO2 Spheres in Dye-Sensitized and Hybrid Heterojunction Solar Cells

作者:Veerappan Ganapathy; Jung Dae Woong; Kwon Jeong; Choi Jeong Mo; Heo Nansra; Yi Gi Ra*; Park Jong Hyeok
来源:Langmuir, 2014, 30(11): 3010-3018.
DOI:10.1021/la404841h

摘要

Micron-sized macroporous TiO2 spheres (MAC-TiO2) were synthesized using a colloidal templating process inside emulsions, which were then coated on a nanocrystalline TiO2 light absorption film to prepare a bilayered photoanode for liquid-based dye-sensitized solar cells (DSSC) and hybrid heterojunction solid-state solar cells. MAC-TiO2 layers can enhance light scattering as well as absorption, because their pore size and periodicity are comparable to light wavelength for unique multiple scattering and a porous surface can load dye more. Moreover, due to the bicontinuous nature of macropores and TiO2 walls, electrolyte could be transported much faster in between the TiO2 spheres rather than within the small TiO2 nonporous architectures. Electron transport was also facilitated along the interconnected TiO2 walls. In DSSCs with these MAC-TiO2 scattering layers, efficiency was higher than conventional DSSCs incorporating a commercial scattering layer. The unique geometry of MAC-TiO2 results in strong improvements in light scattering and infiltration of hole-transporting materials, thereby the MAC-TiO2-based solid-state device showed comparatively higher efficiency than the device with conventional nanocrystalline TiO2.

  • 出版日期2014-3-25