摘要

As a result of recent increase in exploitation of hydrocarbon resources in harsher environments and also installation techniques which utilize the materials plastic deformation capacity, accurate assessment of fracture response of pipelines subject to large plastic strains (e.g., typical of reeled pipes) has attracted particular interest nowadays. In this paper, an approach, based on the evaluation of the J-integral, is developed for assessing the integrity of such pipelines, manifested in a model of a pipeline with a circumferential part-through crack subjected to plastic bending. The proposed approach is an extension of the reference strain method developed earlier by other researchers, and takes advantage of the displacement controlled loading nature in such pipes (thus being suitable for Strain Based Design methodologies), and the resulting high strain levels, which often cause fracture response of the material in the plastic regime. The developed formulation relates the fracture response of the pipe (in terms of the non-dimensionalized J-integral) as a linear function of the axial strain in the pipe at its uncracked state. A series of 300 3D nonlinear finite element models using the ABAQUS software were analyzed in preparation of the equation that could assess the fracture response of such pipes with great accuracy. The resulting equation, calibrated by the finite element results, can predict the fracture response of pipes with a maximum error of 2% for a practical uncracked material strain range of 1.5% <= epsilon(unc) <= 4%.

  • 出版日期2010-8