Nonlinear Effect of Dispersal Rate on Spatial Synchrony of Predator-Prey Cycles

作者:Fox Jeremy W*; Legault Geoff; Vasseur David A; Einarson Jodie A
来源:PLos One, 2013, 8(11): e79527.
DOI:10.1371/journal.pone.0079527

摘要

Spatially-separated populations often exhibit positively correlated fluctuations in abundance and other population variables, a phenomenon known as spatial synchrony. Generation and maintenance of synchrony requires forces that rapidly restore synchrony in the face of desynchronizing forces such as demographic and environmental stochasticity. One such force is dispersal, which couples local populations together, thereby synchronizing them. Theory predicts that average spatial synchrony can be a nonlinear function of dispersal rate, but the form of the dispersal rate-synchrony relationship has never been quantified for any system. Theory also predicts that in the presence of demographic and environmental stochasticity, realized levels of synchrony can exhibit high variability around the average, so that ecologically-identical metapopulations might exhibit very different levels of synchrony. We quantified the dispersal rate-synchrony relationship using a model system of protist predator-prey cycles in pairs of laboratory microcosms linked by different rates of dispersal. Paired predator-prey cycles initially were anti-synchronous, and were subject to demographic stochasticity and spatially-uncorrelated temperature fluctuations, challenging the ability of dispersal to rapidly synchronize them. Mean synchrony of prey cycles was a nonlinear, saturating function of dispersal rate. Even extremely low rates of dispersal (%26lt;0.4% per prey generation) were capable of rapidly bringing initially anti-synchronous cycles into synchrony. Consistent with theory, ecologically-identical replicates exhibited very different levels of prey synchrony, especially at low to intermediate dispersal rates. Our results suggest that even the very low rates of dispersal observed in many natural systems are sufficient to generate and maintain synchrony of cyclic population dynamics, at least when environments are not too spatially heterogeneous.

  • 出版日期2013-11-11