摘要

The high-entropy alloy (HEA) coatings have received considerable attentions owing to their unique structures and properties caused by the quick solidification. In this work, the CoFeNi2V0.5Nb0.75 and CoFeNi2V0.5Nb HEAs which show fully eutectic and hypereutectic microstructures in their casting samples were laser cladded on 304 stainless steel substrate with laser power of 1400, 1600, and 1800 W. Results show that the HEA coatings are composed of the FCC solid solution phase and the Fe2Nb-type Laves phase. The cladding zones of the CoFeNi2V0.5Nb0.75 and CoFeNi2V0.5Nb coatings show cellular dendritic crystals, while the bonding zones show directional columnar crystals. Compared to the 304 stainless steel substrate, the HEA coatings show better wear resistance because of the combination of the hard Fe2Nb-type Laves phase and the ductile FCC solid solution matrix. Moreover, the HEA coatings with power of 1600 W show the best wear resistance attributing to the maximum volume fraction of the hard Fe2Nb-type Laves phase.