摘要

Mesoporous organosilicas with both R-(+)-1,1'-binaphthyl-2,2'-diamine and ethane moieties bridging in the framework were synthesized. This mesoporous material was prepared via the one-step co-condensation of N,N'-bis-[(triethoxysilyl)propyl]-(R)-bis-(ureido)-binaphthyl (Si-DABN) with 1,2-bis(triethoxysilyl)ethane (BTSE) using octadecyltrimethylammonium chloride (C18TMACl) as a structural directing agent with the aid of a co-solvent (ethanol) in basic medium. The morphology of these bifunctionalized mesoporous organosilicas is sensitive to the Si-DABN mole fraction and the base concentration. And the mesostructure becomes less ordered as the mole fraction of Si-DABN in the initial mixture increases from 10 to 40%. Elemental analysis and Fourier transform infrared (FT-IR) spectrometer indicate that the binaphthyl diamine was successfully introduced to the mesoporous organosilicas. Acidic conditions are more suitable than basic ones for the hydrolysis and condensation of (R)-2,2'-dicyanomethoxy-6,6'-di[(2-triethoxysilyl)ethenyl]-1,1'-binaphthyl, a chiral silane precursors with a short silane side chain on the binaphthyl group. A column packed with these bifunctionalized mesoporous organosilica spheres exhibits greater selectivity for R/S-1,1'-bi-2,2'-naphthol than one packed with commercial SiO2 grafted with N,N'-bis-[(triethoxysilyl)propyl]-(R)-bis-(ureido)binaphthyl. Binaphthol and bromosubstituted binaphthol were fully resolved, but two ether derivatives were only partially enantioseparated and the other three ester derivatives were no fully resolved on the column via co-condensation method.