Modification and Implications of Changes in Electrochemical Responses Encountered When Undertaking Deoxygenation in Ionic Liquids

作者:Zhao Chuan; Bond Alan M*; Compton Richard G; O'Mahony Aoife M; Rogers Emma I
来源:Analytical Chemistry, 2010, 82(9): 3856-3861.
DOI:10.1021/ac100378g

摘要

Physicochemical changes and substantially modified electrochemical behavior have been reported when ionic liquids are degassed with nitrogen. In conventional experiments in aqueous and organic media, degassing with N(2) is commonly used to remove the electroactive dissolved oxygen. However, in hydrophilic ionic liquid media, degassing with N(2) removes not only the dissolved oxygen but also a significant amount of the adventitious water present. Given the low viscosity of water, this in turn leads to a dramatic change of the viscosity of the degassed ionic liquid and hence mass transport properties that influence voltammetric responses. In the widely used and relatively viscous room temperature ionic liquid, 1-n-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF(4)) containing the redox probe tetracyanoquinodimethane (TCNQ) and 9% (v/v) deliberately added water, 1 h degassing with very dry N(2) under benchtop conditions results in a dramatic decrease of the TCNQ reduction current obtained under steady-state conditions at a 1 mu m diameter microdisc electrode. This is reflected by a change of diffusion coefficient of TCNQ (D(TCNQ)) from 2.6 x 10(-7) to 4.6 x 10(-8) cm(2) s(-1). Karl Fischer titration measurements show that almost complete removal of the deliberately added 9% water is achieved by degassing under benchtop conditions. However, displacement of oxygen by nitrogen in the ionic liquid solution results in the decrease of electrochemical reduction current by 6%, implying that dissolved gases need not be inert with respect to solvent properties. Oxygen removal by placing the BMIMBF(4) ionic liquid in a nitrogen-filled glovebox or in a vacuum cell also simultaneously leads to removal of water and alteration of voltammetric data. This study highlights that (i) important physicochemical differences may arise upon addition or removal of a solute from viscous ionic liquids; (ii) degassing with dry nitrogen removes water as well as oxygen from ionic liquids, which may have implications on the viscosity and structure of the medium; (iii) particular caution must be exercised when deoxygenation is applied in ionic liquid media as part of the protocol used in electrochemical experiments to remove oxygen; (iv) gases such as oxygen, argon, and nitrogen dissolved in ionic liquids need not be innocent with respect to the properties of an ionic liquid. The use of vacuum based techniques to eliminate all volatile solutes, including water and oxygen, is advocated.

  • 出版日期2010-5-1