摘要

Most existing multirobot systems for pattern formation rely on a predefined pattern, which is impractical for dynamic environments where the pattern to be formed should be able to change as the environment changes. In addition, adaptation to environmental changes should be realized based only on local perception of the robots. In this paper, we propose a hierarchical gene regulatory network (H-GRN) for adaptive multirobot pattern generation and formation in changing environments. The proposed model is a two-layer gene regulatory network (GRN), where the first layer is responsible for adaptive pattern generation for the given environment, while the second layer is a decentralized control mechanism that drives the robots onto the pattern generated by the first layer. An evolutionary algorithm is adopted to evolve the parameters of the GRN subnetwork in layer 1 for optimizing the generated pattern. The parameters of the GRN in layer 2 are also optimized to improve the convergence performance. Simulation results demonstrate that the H-GRN is effective in forming the desired pattern in a changing environment. Robustness of the H-GRN to robot failure is also examined. A proof-of-concept experiment using e-puck robots confirms the feasibility and effectiveness of the proposed model.

  • 出版日期2012-6