摘要

A delay-line-based analog-to-digital converter for high-speed applications is introduced. The ADC converts the sampled input voltage to a delay that controls the propagation velocity of a digital pulse. The output digital code is generated based on the propagation length of the pulse in a fixed time The effects of quantization noise, jitter, and mismatch are discussed. We show that because of the averaging mechanism of the delay-line, this structure is more power efficient in the presence of noise and mismatch in deep sub-micron CMOS. To show the feasibility of this approach, a 4 bit 1.2 GS/s ADC is designed and fabricated in 65 nm CMOS in an active area of 110 mu m x 105 mu m. The measured INL and DNL of the ADC are below 0.8 bits and 0.5 bits and it achieves an SNDR of 20.4 dB at Nyquist rate. This delay-line-based ADC consumes 2 mW of power from a 1.2 V supply resulting in 196 fJ/conversion step without using any calibration or post-processing.

  • 出版日期2011-10