摘要

Efficient flooding agents are required to produce additional oil from mature reservoir. In this work, oil-in-water Pickering emulsion systems stabilized using nanoparticles, surfactant, and polymer have been developed and tested for enhanced oil recovery with and without a conventional polymer flood. Stability of nanoparticles in the dispersion of surfactant-polymer solution was tested using zeta-potential before use. Several flooding experiments have been conducted using Berea core samples at 13.6 MPa and temperatures of 313 and 353 K. It has been observed that a combination of 0.5 PV polymer flood with 0.5 PV Pickering emulsion was efficient and have resulted in 1-6% additional oil recovery as compared to 0.5 PV Pickering emulsion flooding alone. The injection of polymer flood have shown to enhance the pressure drop in the core sample after emulsion flooding and considered as an important factor for an additional recovery of oil. The effect of temperature on the viscosity of flooding agents in relation to pressure drop and oil recovery have also been investigated. Viscosity and pressure drop of emulsion flood systems have shown to marginally decrease with increase in temperature. Studies on nanoparticle retention using SEM have shown that nanoparticles were retained in the core sample during emulsion flooding which may be detrimental for permeability of core sample. It is observed that Pickering emulsion flood with polymer flood would be effective for the enhanced oil recovery suitable for matured reservoirs.