A spherical cavity model for quadrupolar dielectrics

作者:Dimitrova Iglika M; Slavchov Radomir I*; Ivanov Tzanko; Mo**ach Sebastian
来源:Journal of Chemical Physics, 2016, 144(11): 114502.
DOI:10.1063/1.4943196

摘要

The dielectric properties of a fluid composed of molecules possessing both dipole and quadrupole moments are studied based on a model of the Onsager type (molecule in the centre of a spherical cavity). The dielectric permittivity epsilon and the macroscopic quadrupole polarizability alpha(Q) of the fluid are related to the basic molecular characteristics (molecular dipole, polarizability, quadrupole, quadrupolarizability). The effect of aQ is to increase the reaction field, to bring forth reaction field gradient, to decrease the cavity field, and to bring forth cavity field gradient. The effects from the quadrupole terms are significant in the case of small cavity size in a non-polar liquid. The quadrupoles in the medium are shown to have a small but measurable effect on the dielectric permittivity of several liquids (Ar, Kr, Xe, CH4, N-2, CO2, CS2, C6H6, H2O, CH3OH). The theory is used to calculate the macroscopic quadrupolarizabilities of these fluids as functions of pressure and temperature. The cavity radii are also determined for these liquids, and it is shown that they are functions of density only. This extension of Onsager's theory will be important for non-polar solutions (fuel, crude oil, liquid CO2), especially at increased pressures.

  • 出版日期2016-3-21