摘要

The single-well injection-withdrawal (SWIW) tracer test is a method used to estimate the tracer retardation properties of a fracture or fracture zone. The effects of single-fracture aperture heterogeneity on SWIW-test tracer breakthrough curves are examined by numerical modelling. The effects of the matrix diffusion and sorption are accounted for by using a particle tracking method through the addition of a time delay added to the advective transport time. For a given diffusion and sorption property (P (m)) value and for a heterogeneous fracture, the peak concentration is larger compared to a homogeneous fracture. The cumulative breakthrough curve for a heterogeneous fracture is similar to that for a homogeneous fracture and a less sorptive/diffusive tracer. It is demonstrated that the fracture area that meets the flowing water, the specific flow-wetted surface (sFWS) of the fracture, can be determined by matching the observed breakthrough curve for a heterogeneous fracture to that for a homogeneous fracture with an equivalent property parameter. SWIW tests are also simulated with a regional pressure gradient present. The results point to the possibility of distinguishing the effect of the regional pressure gradient from that of diffusion through the use of multiple tracers with different P (m) values.

  • 出版日期2013-12