Uterine Leiomyoma Stem Cells: Linking Progesterone to Growth

作者:Bulun Serdar E*; Moravek Molly B; Yin Ping; Ono Masanori; Coon John S; Dyson Matthew T; Navarro Antonia; Marsh Erica E; Zhao Hong; Maruyama Tetsuo; Chakravarti Debabrata; Kim J Julie; Wei Jian Jun
来源:Seminars in Reproductive Medicine, 2015, 33(5): 357-365.
DOI:10.1055/s-0035-1558451

摘要

Uterine leiomyomas (fibroids) represent the most common class of benign tumors in women. Multiple leiomyomas usually arise from the uterus of a symptomatic woman. These tumors cause a variety of symptoms, including abnormal uterine bleeding, pelvic pain, bladder or bowel dysfunction, and recurrent pregnancy loss, and are responsible for more than 200,000 hysterectomies in the United States annually. Each leiomyoma seems to arise from the clonal expansion of a single myometrial smooth muscle cell transformed by a mutation. Tumor expansion is sustained by cell proliferation together with the production of large amounts of extracellular matrix. Estrogen and progesterone stimulate the growth of leiomyomas. Estrogen, together with its receptor ER alpha, enables progesterone action via induction of progesterone receptor (PR) expression. Progesterone induces the growth of leiomyoma by regulation of a set of key genes that control proliferation and apoptosis. A distinct cell population with stem-progenitor properties is indispensable for progesterone-dependent growth of leiomyomas. This stem-progenitor cell population is deficient in ERa and PR and dependent on the much higher levels of these steroid receptors in surrounding mature leiomyoma or myometrial cells. Progesterone sends paracrine signals from these mature cells to stem cells. The WNT/beta-catenin pathway comprises a key component of this paracrine signaling system. The majority of medical treatments currently available for leiomyoma works by inhibiting estrogen or progesterone production or action, but tumors tend to regrow once treatment is stopped. Targeting stem cells and their paracrine interactions with more differentiated cell populations within leiomyoma may lead to the development of more effective therapeutics.