摘要

Three-phase gas-liquid-liquid flows are very common in petroleum extraction, production, and transport. In this work a dual-modality measuring technique is introduced which may be well applied for three-phase flow visualization. The measuring principle is based on simultaneous excitation with two distinct frequencies to interrogate each crossing point of a mesh sensor, which in turn are linked to conductive and capacitive parts of fluid impedance. The developed system can operate eight transmitter and eight receiver electrodes at a frame repetition frequency up to 781 Hz. The system has been evaluated by measuring reference components. The overall measurement uncertainty was 8.4%, which considering the fast repetition frequency of measurements is suitable for flow investigation. Furthermore, a model-based method to fuse the data from the dual-modality wire-mesh sensor and to obtain individual phase fraction of gas-oil-water flow is introduced. Here a parametrized model is fitted to the measured conductivity and permittivity distributions enabling one to obtain phase fraction from measured data. The method has been applied and tested to the acquired data from a mesh sensor in static and dynamic three-phase mixtures of gas, oil, and water. Fused images and quantitative values show good agreement with reference values. The newly developed dual-modality wire-mesh sensor has the potential to investigate three-phase flows to a good degree of detail, being a valuable tool to investigate such flows.

  • 出版日期2015-10