Mechanical behavior of a bi-layer glass ionomer

作者:Bonifacio Clarissa C*; de Jager Niek; Kleverlaan Cornelis J
来源:Dental Materials, 2013, 29(10): 1020-1025.
DOI:10.1016/j.dental.2013.07.008

摘要

Objective. A high-viscosity consistency of the glass-ionomer cement (GIC) may lead to poor adaptation into the cavity. The use of a flowable GIC layer seemed to improve its adaptation in approximal restorations in vitro. In this study we assessed the flexural strength of a two-layered GIC, using a flowable GIC as a liner (two-layer technique). Additionally, finite element analysis on standardized bar-shaped models and on a representative tooth model was performed to rationalize the obtained results. Methods. The flexural strength and Young's modulus were calculated from the results of a three-point-bending test. Bar-shaped specimens were prepared either with a conventional GIC, with a flowable GIC (powder/liquid ratio 1: 2), or with two-layers (either with the flowable layer down or on the top of the specimen). Three dimensional FEA models of the bar-shaped specimens and a model of tooth 46 provided information on the stress distribution of each component of the specimen and on the restoration. Results. The apparent flexural strength and Young's modulus of both two-layered groups were significantly lower than that of the conventional group. FEA showed that the layers of the two-layer specimens with the flowable GIC down separated from each other under load. The tooth model showed better stress distribution for the two-layer restorations. Significance. The two-layer GIC showed inferior flexural strength, which might be explained by the detachment of the layers under load. Nevertheless the tooth model showed that the two-layer GIC provides a lower stress concentration on the occlusal surface of the material.

  • 出版日期2013-10