摘要

This paper proposes an adaptive sensorless position control system for a synchronous reluctance motor (SynRM). By using the proposed dual current-slope estimating technique, the rotor position of the SynRM can be precisely obtained. In addition, a comparison which shows that the proposed dual current-slope method has better performance than the traditional single current-slope method is discussed. To improve the transient responses and load disturbance rejection capability, an adaptive controller and a novel online self-tuning-gain state estimator are proposed here. A TMS-320F-28335 digital signal processor is used to execute the rotor position estimation, self-tuning-gain state estimation, adaptive control algorithm, d-q to a-b-c coordinate transformation, and PWM switching strategy. As a result, the hardware circuit is very simple. Experimental results show that the proposed system has satisfactory performance and good robustness. The estimated position error of the proposed dual current-slope estimating method can be reduced to 50% as compared to the traditional single current-slope position estimating method. Several experimental results are provided to validate the theoretical analysis.

  • 出版日期2012-9