摘要

Slow displacement rate tensile tests were carried out to assess the effect of hydrogen embrittlement on notched tensile strength (NTS) and fracture characteristics of AISI 316L and 254 SMO stainless steel (SS) plates and welds. 254 SMO generally exhibited a better resistance to hydrogen embrittlement than 316L. The strain-induced transformation of austenite to martensite in the 316L SS was responsible for the high hydrogen embrittlement susceptibility of the alloy and weld. Sensitized 254 SMO (i.e., heat-treated at 1000 degrees C/40 min) base plate and weld comprised of dense precipitates along grain boundaries. Interfacial separation along solidified boundaries was observed with the tensile fracture of 254 SMO weld, especially the sensitized one. Dense grain boundary precipitates not only reduced the ductility but also raised the susceptibility to sulfide stress corrosion cracking of the sensitized 254 SMO plate and weld.

  • 出版日期2007-10