摘要

The average tilt angle of sunspot groups emerging throughout the solar cycle determines the net magnetic flux crossing the equator, which is correlated with the strength of the subsequent cycle. I suggest that a deep-seated, non-local process can account for the observed cycle-dependent changes in the average tilt angle. Motivated by helioseismic observations indicating cycle-scale variations in the sound speed near the base of the convection zone, I determined the effect of a thermally perturbed overshoot region on the stability of flux tubes and on the tilt angles of emerging flux loops. I found that 5-20 K of cooling is sufficient for emerging flux loops to reproduce the reported amplitude of cycle-averaged tilt angle variations, suggesting that it is a plausible effect responsible for the nonlinearity of the solar activity cycle.

  • 出版日期2015-11-1

全文