摘要

Background and Objective:
Gene expression is related to the pathogenesis of periodontitis and plays a crucial role in local tissue destruction and disease susceptibility. The aims of the present study were to identify the expression of specific genes and biological pathways in periodontitis-affected gingival tissue using microarray and quantitative real-time RT-PCR analyses.
Material and Methods:
Healthy and periodontitis-affected gingival tissues were taken from three patients with severe chronic periodontitis. Total RNAs from six gingival tissue samples were used for microarray analyses. Data-mining analyses, such as comparisons, gene ontology and pathway analyses, were performed and biological pathways with a significant role in periodontitis were identified. In addition, quantitative real-time RT-PCR analysis was performed on samples obtained from 14 patients with chronic periodontitis and from 14 healthy individuals in order to confirm the results of the pathway analysis.
Results:
Comparison analyses found 15 up-regulated and 13 down-regulated genes (all of which showed a change of more than twofold in expression levels) in periodontitis-affected gingival tissues. Pathway analysis identified 15 up-regulated biological pathways, including leukocyte transendothelial migration, and five down-regulated pathways, including cell communication. Quantitative real-time RT-PCR verified that five genes in the leukocyte transendothelial migration pathway were significantly up-regulated, and four genes in the cell communication pathway were significantly down-regulated, which was consistent with pathway analysis.
Conclusion:
We identified up-regulated genes (ITGB-2, MMP-2, CXCL-12, CXCR-4 and Rac-2) and down-regulated genes (connexin, DSG-1, DSC-1 and nestin) in periodontitis-affected gingival tissues; these genes may be related to the stimulation of leukocyte transendothelial migration and to the the impairment of cell-to-cell communication in periodontitis.

  • 出版日期2011-6