Nonlinear Large Angle Solutions of the Blade Element Momentum Theory Propeller Equations

作者:Whitmore Stephen A*; Merrill Robert S
来源:Journal of Aircraft, 2012, 49(4): 1126-1134.
DOI:10.2514/1.C031645

摘要

Propeller blade element momentum theory is a first-order method commonly used to analyze propeller performance. Blade element theory discretizes the rotor, analyzes aerodynamic forces acting on each element, and requires only a rudimentary description of the blade geometry. Blade element theory alone lacks the ability of predicting the propeller-induced inflow velocity needed to complete the flowfield description. The flow model is completed using concepts from momentum theory, which assumes a single continuous axisymmetric flow-through rotor disk. The traditional method used to solve the blade element momentum equations assumes a small local angle of attack at all sections along the blade and that local induced drag negligibly reduces the local propeller thrust coefficient. These assumptions, while allowing a closed form solution to be obtained, are known to be inaccurate at high advance ratios and along the inner half-span of the blade. An alternative nonlinear, numerical solution method that avoids these inaccurate simplifying assumptions is presented. Solution methods are compared for multiple pitch angles and advance ratios. Solutions are compared with thrust and power coefficient data collected from wind-tunnel tests of small radio-control aircraft propellers. The nonlinear theory corrections better represent measured propeller performance, especially at high advance ratios.

  • 出版日期2012-8