摘要

This paper has developed a scattering cancellation technique to achieve illusion and invisibility of inhomogeneous cylinders and spheres. The inhomogeneous cylinders and spheres are modelled as many thin layers of piecewise homogeneous layers. For the two-layer cylindrical and spherical objects with the isotropic coatings, Mie series solutions to the resulting scattered fields are analyzed in the quasistatic limit, and thus geometric and electromagnetic parameters of the coatings are derived to realize the illusion and invisibility of the two-layer cylindrical and spherical objects. Following a further generalization step, the coating parameters are determined for the illusion and invisibility of the inhomogeneous cylinders and spheres composed of N piecewise homogeneous layers. With the proposed method, the electrically small inhomogeneous cylindrical and spherical objects with arbitrary media and conductor core can be hidden, and have illusion images generated by the objects with similar shapes but different electromagnetic parameters and geometric sizes. Numerical results are given to verify correctness and effectiveness of the proposed method.