Hyaluronic Acid/Collagen Hydrogel as an Alternative to Alginate for Long-Term Immunoprotected Islet Transplantation

作者:Harrington Stephen; Williams Janette; Rawal Sonia; Ramachandran Karthik; Stehno Bittel Lisa*
来源:Tissue Engineering Part A, 2017, 23(19-20): 1088-1099.
DOI:10.1089/ten.tea.2016.0477

摘要

Alginate has long been the material of choice for immunoprotection of islets due to its low cost and ability to easily form microspheres. Unfortunately, this seaweed-derived material is notoriously prone to fibrotic overgrowth in vivo, resulting in premature graft failure. The purpose of this study was to test an alternative, hyaluronic acid (HA-COL), for in vitro function, viability, and allogeneic islet transplant outcomes in diabetic rats. In vitro studies indicated that the HA-COL gel had diffusion characteristics that would allow small molecules such as glucose and insulin to enter and exit the gel, whereas larger molecules (70 and 500 kDa dextrans) were impeded from diffusing past the gel edge in 24 h. Islets encapsulated in HA-COL hydrogel showed significantly improved in vitro viability over unencapsulated islets and retained their morphology and glucose sensitivity for 28 days. When unencapsulated allogeneic islet transplants were administered to the omentum of outbred rats, they initially were normoglycemic, but by 11 days returned to hyperglycemia. Immunohistological examination of the grafts and surrounding tissue indicated strong graft rejection. By comparison, when using the same outbred strain of rats, allogeneic transplantation of islets within the HA-COL gel reversed long-termdiabetes and prevented graft rejection in all animals. Animals were sacrificed at 40, 52, 64, and 80 weeks for evaluation, and all were non-diabetic at sacrifice. Explanted grafts revealed viable islets in the transplant site as well as intact hydrogel, with little or no evidence of fibrotic overgrowth or cellular rejection. The results of these studies demonstrate great potential for HA-COL hydrogel as an alternative to sodium alginate for long-term immunoprotected islet transplantation.

  • 出版日期2017-10