An improved Corten-Dolan's model based on damage and stress state effects

作者:Gao, Huiying; Huang, Hong-Zhong*; Lv, Zhiqiang; Zuo, Fang-Jun; Wang, Hai-Kun
来源:Journal of Mechanical Science and Technology, 2015, 29(8): 3215-3223.
DOI:10.1007/s12206-015-0721-x

摘要

The value of exponent d in Corten-Dolan's model is generally considered to be a constant. Nonetheless, the results predicted on the basis of this statement deviate significantly from the real values. In consideration of the effects of damage and stress state on fatigue life prediction, Corten-Dolan's model is improved by redefining the exponent d used in the traditional model. The improved model performs better than the traditional one with respect to the demonstration of a fatigue failure mechanism. Predictions of fatigue life on the basis of investigations into three metallic specimens indicate that the errors caused by the improved model are significantly smaller than those induced by the traditional model. Meanwhile, predictions derived according to the improved model fall into a narrower dispersion zone than those made as per Miner's rule and the traditional model. This finding suggests that the proposed model improves the life prediction accuracy of the other two models. The predictions obtained using the improved Corten-Dolan's model differ slightly from those derived according to a model proposed in previous literature; a few life predictions obtained on the basis of the former are more accurate than those derived according to the latter. Therefore, the improved model proposed in this paper is proven to be rational and reliable given the proven validity of the existing model. Therefore, the improved model can be feasibly and credibly applied to damage accumulation and fatigue life prediction to some extent.