摘要

Nanotechnology can be used in engineering-desired textile attributes, such as fabric softness and durability in fibres, yarns and fabrics. Nanocoating the surface of socks is one approach to the production of highly active surfaces with UV blocking, antimicrobial and self-cleaning properties. Synthesis of silver nanoparticles in this project was carried out chemically by wet reduction method (Ag-chem) and biologically by using neem (Azadirachta indica) leaves (Ag-neem). The formation of silver nanoparticles was monitored by UV-visible spectroscopy, which revealed the surface plasmon resonance peak at 420 nm for Ag-chem and 430 nm for Ag-neem, and transmission electron microscopy, which showed nanoparticles of various shapes and sizes (similar to 5-50 nm). Quantification of the prepared silver nanoparticles was done by atomic absorption spectroscopy, which revealed 0.044M Ag+ and 0.042 M Ag+ ions in Ag-chem and Ag-neem, respectively. Coating of the socks fabrics (nylon and cotton) was carried out by exposing these fabrics to the prepared nanoparticle solutions on a gyratory shaker overnight. Antimicrobial activity of the Ag-chem and Ag-neem was carried out by performing minimum inhibitory concentration (MIC) and disc diffusion test against Sarcina lutea, an odour-producing organism, Klebsiella pnuemoniae, Pseudomonas aeruginosa, methicillin-resistant Staphylococcus aureus and Candida albicans, organisms causing foot infections. P. aeruginosa and S. lutea were found to be most sensitive to either of the above preparations. Ag-chem was found to be more effective than Ag-neem. Nylon and cotton socks fabrics were coated with each of the above preparations. The antibacterial efficacy of the nanosilver-finished fabrics was checked by zone inhibition test, antibacterial test and wash fastness test. In both cases, coated nylon fabrics showed better antimicrobial activity than coated cotton fabrics. S. lutea and K. pneumoniae showed greater zones of inhibition than the other test organisms. Nylon fabric coated with Ag-chem and Ag-neem gave maximum reduction in viable count of all test organisms as compared to cotton fabrics. Higher reduction in the viable count of all test organisms was observed with Ag-chem-coated nylon fabrics. Thus, coating of the nylon socks fabric with silver nanoparticles can be used as an effective way to combat foot-borne pathogens and thereby reducing discomforts like foot odour, perspiration, complications due to diabetes, athlete's foot, etc.

  • 出版日期2012